macOS的OpenCL高性能计算
OpenCL的简要入门
随着深度学习、区块链的发展,人类对计算量的需求越来越高,在传统的计算模式下,压榨GPU的计算能力一直是重点。
NV系列的显卡在这方面走的比较快,CUDA框架已经普及到了高性能计算的各个方面,比如Google的TensorFlow深度学习框架,默认内置了支持CUDA的GPU计算。
AMD(ATI)及其它显卡在这方面似乎一直不够给力,在CUDA退出后仓促应对,使用了开放式的OPENCL架构,其中对CUDA应当说有不少的模仿。开放架构本来是一件好事,但OPENCL的发展一直不尽人意。而且为了兼容更多的显卡,程序中通用层导致的效率损失一直比较大。而实际上,现在的高性能显卡其实也就剩下了NV/AMD两家的竞争,这样基本没什么意义的性能损失不能不说让人纠结。所以在个人工作站和个人装机市场,通常的选择都是NV系列的显卡。
mac电脑在这方面是比较尴尬的,当前的高端系列是MacPro垃圾桶。至少新款的一体机MacPro量产之前,垃圾桶仍然是mac家性能的扛鼎产品。然而其内置的显卡就是AMD,只能使用OPENCL通用计算框架了。
下面是苹果官方给出的一个OPENCL的入门例子,结构很清晰,展示了使用显卡进行高性能计算的一般结构,我在注释中增加了中文的说明,相信可以让你更容易的上手OPENCL显卡计算。
//
// File: hello.c
//
// Abstract: A simple "Hello World" compute example showing basic usage of OpenCL which
// calculates the mathematical square (X[i] = pow(X[i],2)) for a buffer of
// floating point values.
//
//
// Version: <1.0>
//
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
// in consideration of your agreement to the following terms, and your use,
// installation, modification or redistribution of this Apple software
// constitutes acceptance of these terms. If you do not agree with these
// terms, please do not use, install, modify or redistribute this Apple
// software.
//
// In consideration of your agreement to abide by the following terms, and
// subject to these terms, Apple grants you a personal, non - exclusive
// license, under Apple's copyrights in this original Apple software ( the
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
// Software, with or without modifications, in source and / or binary forms;
// provided that if you redistribute the Apple Software in its entirety and
// without modifications, you must retain this notice and the following text
// and disclaimers in all such redistributions of the Apple Software. Neither
// the name, trademarks, service marks or logos of Apple Inc. may be used to
// endorse or promote products derived from the Apple Software without specific
// prior written permission from Apple. Except as expressly stated in this
// notice, no other rights or licenses, express or implied, are granted by
// Apple herein, including but not limited to any patent rights that may be
// infringed by your derivative works or by other works in which the Apple
// Software may be incorporated.
//
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <OpenCL/opencl.h>
////////////////////////////////////////////////////////////////////////////////
// Use a static data size for simplicity
//
#define DATA_SIZE (1024)
////////////////////////////////////////////////////////////////////////////////
// Simple compute kernel which computes the square of an input array
// 这是OPENCL用于计算的内核部分源码,跟C相同的语法格式,通过编译后将发布到GPU设备
//(或者将来专用的计算设备)上面去执行。因为显卡通常有几十、上百个内核,所以这部分
// 需要设计成可并发的程序逻辑。
//
const char *KernelSource = "\n" \
"__kernel void square( \n" \
" __global float* input, \n" \
" __global float* output, \n" \
" const unsigned int count) \n" \
"{ \n" \
// 并发逻辑主要是在下面这一行体现的,i的初始值获取当前内核的id(整数),根据id计算自己的那一小块任务
" int i = get_global_id(0); \n" \
" if(i < count) \n" \
" output[i] = input[i] * input[i]; \n" \
"} \n" \
"\n";
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char** argv)
{
int err; // error code returned from api calls
float data[DATA_SIZE]; // original data set given to device
float results[DATA_SIZE]; // results returned from device
unsigned int correct; // number of correct results returned
size_t global; // global domain size for our calculation
size_t local; // local domain size for our calculation
cl_device_id device_id; // compute device id
cl_context context; // compute context
cl_command_queue commands; // compute command queue
cl_program program; // compute program
cl_kernel kernel; // compute kernel
cl_mem input; // device memory used for the input array
cl_mem output; // device memory used for the output array
// Fill our data set with random float values
//
int i = 0;
unsigned int count = DATA_SIZE;
//随机产生一组浮点数据,用于给GPU进行计算
for(i = 0; i < count; i++)
data[i] = rand() / (float)RAND_MAX;
// Connect to a compute device
//
int gpu = 1;
// 获取GPU设备,OPENCL的优势是可以使用CPU进行模拟,当然这种功能只是为了在没有GPU设备上进行调试
// 如果上面变量gpu=0的话,则使用CPU模拟
err = clGetDeviceIDs(NULL, gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);
if (err != CL_SUCCESS)
{
printf("Error: Failed to create a device group!\n");
return EXIT_FAILURE;
}
// Create a compute context
// 建立一个GPU计算的上下文环境,一组上下文环境保存一组相关的状态、内存等资源
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
if (!context)
{
printf("Error: Failed to create a compute context!\n");
return EXIT_FAILURE;
}
// Create a command commands
//使用获取到的GPU设备和上下文环境监理一个命令队列,其实就是给GPU的任务队列
commands = clCreateCommandQueue(context, device_id, 0, &err);
if (!commands)
{
printf("Error: Failed to create a command commands!\n");
return EXIT_FAILURE;
}
// Create the compute program from the source buffer
//将内核程序的字符串加载到上下文环境
program = clCreateProgramWithSource(context, 1, (const char **) & KernelSource, NULL, &err);
if (!program)
{
printf("Error: Failed to create compute program!\n");
return EXIT_FAILURE;
}
// Build the program executable
//根据所使用的设备,将程序编译成目标机器语言代码,跟通常的编译类似,
//内核程序的语法类错误信息都会在这里出现,所以一般尽可能打印完整从而帮助判断。
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if (err != CL_SUCCESS)
{
size_t len;
char buffer[2048];
printf("Error: Failed to build program executable!\n");
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
printf("%s\n", buffer);
exit(1);
}
// Create the compute kernel in the program we wish to run
//使用内核程序的函数名建立一个计算内核
kernel = clCreateKernel(program, "square", &err);
if (!kernel || err != CL_SUCCESS)
{
printf("Error: Failed to create compute kernel!\n");
exit(1);
}
// Create the input and output arrays in device memory for our calculation
// 建立GPU的输入缓冲区,注意READ_ONLY是对GPU而言的,这个缓冲区是建立在显卡显存中的
input = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count, NULL, NULL);
// 建立GPU的输出缓冲区,用于输出计算结果
output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count, NULL, NULL);
if (!input || !output)
{
printf("Error: Failed to allocate device memory!\n");
exit(1);
}
// Write our data set into the input array in device memory
// 将CPU内存中的数据,写入到GPU显卡内存(内核函数的input部分)
err = clEnqueueWriteBuffer(commands, input, CL_TRUE, 0, sizeof(float) * count, data, 0, NULL, NULL);
if (err != CL_SUCCESS)
{
printf("Error: Failed to write to source array!\n");
exit(1);
}
// Set the arguments to our compute kernel
// 设定内核函数中的三个参数
err = 0;
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);
err |= clSetKernelArg(kernel, 2, sizeof(unsigned int), &count);
if (err != CL_SUCCESS)
{
printf("Error: Failed to set kernel arguments! %d\n", err);
exit(1);
}
// Get the maximum work group size for executing the kernel on the device
//获取GPU可用的计算核心数量
err = clGetKernelWorkGroupInfo(kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, NULL);
if (err != CL_SUCCESS)
{
printf("Error: Failed to retrieve kernel work group info! %d\n", err);
exit(1);
}
// Execute the kernel over the entire range of our 1d input data set
// using the maximum number of work group items for this device
// 这是真正的计算部分,计算启动的时候采用队列的方式,因为一般计算任务的数量都会远远大于可用的内核数量,
// 在下面函数中,local是可用的内核数,global是要计算的数量,OPENCL会自动执行队列,完成所有的计算
// 所以在前面强调了,内核程序的设计要考虑、并尽力利用这种并发特征
global = count;
err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global, &local, 0, NULL, NULL);
if (err)
{
printf("Error: Failed to execute kernel!\n");
return EXIT_FAILURE;
}
// Wait for the command commands to get serviced before reading back results
// 阻塞直到OPENCL完成所有的计算任务
clFinish(commands);
// Read back the results from the device to verify the output
// 从GPU显存中把计算的结果复制到CPU内存
err = clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(float) * count, results, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
printf("Error: Failed to read output array! %d\n", err);
exit(1);
}
// Validate our results
// 下面是使用CPU计算来验证OPENCL计算结果是否正确
correct = 0;
for(i = 0; i < count; i++)
{
if(results[i] == data[i] * data[i])
correct++;
}
// Print a brief summary detailing the results
// 显示验证的结果
printf("Computed '%d/%d' correct values!\n", correct, count);
// Shutdown and cleanup
// 清理各类对象及关闭OPENCL环境
clReleaseMemObject(input);
clReleaseMemObject(output);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseCommandQueue(commands);
clReleaseContext(context);
return 0;
}
因为使用了mac的OPENCL框架,所以编译的时候要加上对框架的引用,如下所示:
gcc -o hello hello.c -framework OpenCL